14 changed files with 431 additions and 288 deletions
Before Width: | Height: | Size: 1005 B |
Before Width: | Height: | Size: 1013 B |
Before Width: | Height: | Size: 88 KiB |
Before Width: | Height: | Size: 1.4 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 3.6 KiB |
@ -1,253 +1,304 @@ |
|||
var dom1 = document.getElementById('container1'); |
|||
// pressure(dom1, 1);
|
|||
|
|||
/** |
|||
* 绘制图 |
|||
* @param dom |
|||
* @param item |
|||
*/ |
|||
function pressure(dom, item){ |
|||
var myChart = echarts.init(dom, null, { |
|||
renderer: 'canvas', |
|||
useDirtyRect: false |
|||
}); |
|||
var app = {}; |
|||
var dom2 = document.getElementById('container2'); |
|||
lineGraph(dom1, '温度', '℃') |
|||
lineGraph2(dom2, '血氧', '%') |
|||
|
|||
var option; |
|||
function lineGraph(dom, title, unit){ |
|||
var myChart = echarts.init(dom, null, { |
|||
renderer: 'canvas', |
|||
useDirtyRect: false |
|||
}); |
|||
var app = {}; |
|||
var ROOT_PATH = ''; |
|||
var option; |
|||
var dataAll = []; |
|||
|
|||
let noise = getNoiseHelper(); |
|||
let xData = []; |
|||
let yData = []; |
|||
noise.seed(Math.random()); |
|||
function generateData(theta, min, max) { |
|||
let data = []; |
|||
for (let i = 0; i <= 100; i++) { |
|||
xData.push(i); |
|||
} |
|||
for (let j = 0; j < 100; j++) { |
|||
yData.push(j); |
|||
} |
|||
return data; |
|||
$.get( |
|||
ROOT_PATH + '/loraData', |
|||
function (_rawData) { |
|||
_rawData.forEach(value => dataAll.push(value)); |
|||
run(_rawData); |
|||
} |
|||
let data = generateData(2, -5, 5); |
|||
|
|||
setTimer(); |
|||
function setTimer () { |
|||
let timer = null |
|||
$.get('/tabularData?item=' + item).done(function(data) { |
|||
if(data){//根据返回状态判断
|
|||
let pressure = data.pressure |
|||
myChart.setOption({ |
|||
series: [ |
|||
{ |
|||
data: pressure |
|||
} |
|||
); |
|||
function run(_rawData) { |
|||
_rawData.unshift(["Income","Life Expectancy","Population","Country","Year"]) |
|||
// var countries = ['Australia', 'Canada', 'China', 'Cuba', 'Finland', 'France', 'Germany', 'Iceland', 'India', 'Japan', 'North Korea', 'South Korea', 'New Zealand', 'Norway', 'Poland', 'Russia', 'Turkey', 'United Kingdom', 'United States'];
|
|||
const countries = [title]; |
|||
const datasetWithFilters = []; |
|||
const seriesList = []; |
|||
echarts.util.each(countries, function (country) { |
|||
var datasetId = 'dataset_' + country; |
|||
datasetWithFilters.push({ |
|||
id: datasetId, |
|||
fromDatasetId: 'dataset_raw', |
|||
transform: { |
|||
type: 'filter', |
|||
config: { |
|||
and: [ |
|||
// { dimension: 'Year', gte: 1950 },
|
|||
{ dimension: 'Country', '=': country } |
|||
] |
|||
}); |
|||
|
|||
|
|||
var myDate = new Date(); |
|||
var mytime = myDate.toLocaleTimeString(); |
|||
let original = mytime + ' '; |
|||
pressure.forEach((elem, index) => { |
|||
original += elem[2] * 64 + ' ' |
|||
}) |
|||
|
|||
$(".sound-code-chunk-default-content").html(original); |
|||
$("#foot-content1").html(data['foot'][0] + '℃'); |
|||
$("#foot-content2").html(data['foot'][1] + '%'); |
|||
$("#foot-content3").html(data['foot'][2] + '℃'); |
|||
$("#foot-content4").html(data['foot'][3] + '%'); |
|||
$("#foot-content5").html(data['foot'][4] + '℃'); |
|||
$("#foot-content6").html(data['foot'][5] + '%'); |
|||
$("#foot-content7").html(data['foot'][6] + '℃'); |
|||
$("#foot-content8").html(data['foot'][7] + '%'); |
|||
|
|||
timer = setTimeout(()=>{ |
|||
setTimer () |
|||
},5000)//2秒查一下
|
|||
} else { |
|||
clearTimeout(timer);//清理定时任务
|
|||
} |
|||
} |
|||
}); |
|||
} |
|||
|
|||
|
|||
|
|||
seriesList.push({ |
|||
type: 'line', |
|||
datasetId: datasetId, |
|||
showSymbol: false, |
|||
smooth: true, |
|||
name: country, |
|||
endLabel: { |
|||
show: true, |
|||
formatter: function (params) { |
|||
return params.value[3] + ': ' + params.value[0] + unit; |
|||
} |
|||
}, |
|||
labelLayout: { |
|||
moveOverlap: 'shiftY' |
|||
}, |
|||
emphasis: { |
|||
focus: 'series' |
|||
}, |
|||
encode: { |
|||
x: 'Year', |
|||
y: 'Income', |
|||
label: ['Country', 'Income'], |
|||
itemName: 'Year', |
|||
tooltip: ['Income'] |
|||
} |
|||
}); |
|||
}); |
|||
option = { |
|||
tooltip: {}, |
|||
animationDuration: 10000, |
|||
dataset: [ |
|||
{ |
|||
id: 'dataset_raw', |
|||
source: _rawData |
|||
}, |
|||
...datasetWithFilters |
|||
], |
|||
tooltip: { |
|||
order: 'valueDesc', |
|||
trigger: 'axis' |
|||
}, |
|||
xAxis: { |
|||
type: 'category', |
|||
data: xData |
|||
nameLocation: 'middle' |
|||
}, |
|||
yAxis: { |
|||
type: 'category', |
|||
data: yData |
|||
scale: false, |
|||
name: 'Income', |
|||
min: 30, |
|||
max: 40, |
|||
}, |
|||
visualMap: { |
|||
show:false, |
|||
min: 0, |
|||
max: 1, |
|||
calculable: true, |
|||
realtime: false, |
|||
inRange: { |
|||
color: [ |
|||
// '#313695',
|
|||
// '#4575b4',
|
|||
// '#74add1',
|
|||
// '#abd9e9',
|
|||
// '#e0f3f8',
|
|||
// '#ffffbf',
|
|||
// '#fee090',
|
|||
// '#fdae61',
|
|||
// '#f46d43',
|
|||
// '#d73027',
|
|||
// '#a50026'
|
|||
|
|||
'#ffffdc', |
|||
'#ffffbf', |
|||
'#ffff71', |
|||
'#fee090', |
|||
'#ffc993', |
|||
'#fdae61', |
|||
'#f87f59', |
|||
'#f46d43', |
|||
'#e34d45', |
|||
'#d73027', |
|||
'#a50026', |
|||
] |
|||
} |
|||
grid: { |
|||
right: 140 |
|||
}, |
|||
series: [ |
|||
{ |
|||
name: 'Gaussian', |
|||
type: 'heatmap', |
|||
data: data, |
|||
emphasis: { |
|||
itemStyle: { |
|||
borderColor: '#333', |
|||
borderWidth: 1 |
|||
} |
|||
}, |
|||
progressive: 1000, |
|||
animation: false |
|||
} |
|||
] |
|||
series: seriesList |
|||
}; |
|||
///////////////////////////////////////////////////////////////////////////
|
|||
// perlin noise helper from https://github.com/josephg/noisejs
|
|||
///////////////////////////////////////////////////////////////////////////
|
|||
function getNoiseHelper() { |
|||
class Grad { |
|||
constructor(x, y, z) { |
|||
this.x = x; |
|||
this.y = y; |
|||
this.z = z; |
|||
} |
|||
dot2(x, y) { |
|||
return this.x * x + this.y * y; |
|||
} |
|||
dot3(x, y, z) { |
|||
return this.x * x + this.y * y + this.z * z; |
|||
} |
|||
} |
|||
const grad3 = [ |
|||
new Grad(1, 1, 0), |
|||
new Grad(-1, 1, 0), |
|||
new Grad(1, -1, 0), |
|||
new Grad(-1, -1, 0), |
|||
new Grad(1, 0, 1), |
|||
new Grad(-1, 0, 1), |
|||
new Grad(1, 0, -1), |
|||
new Grad(-1, 0, -1), |
|||
new Grad(0, 1, 1), |
|||
new Grad(0, -1, 1), |
|||
new Grad(0, 1, -1), |
|||
new Grad(0, -1, -1) |
|||
]; |
|||
const p = [ |
|||
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, |
|||
36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, |
|||
234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, |
|||
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, |
|||
134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, |
|||
230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, |
|||
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, |
|||
116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, |
|||
124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, |
|||
47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, |
|||
154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, |
|||
108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, |
|||
242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, |
|||
239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, |
|||
50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, |
|||
141, 128, 195, 78, 66, 215, 61, 156, 180 |
|||
]; |
|||
// To remove the need for index wrapping, double the permutation table length
|
|||
let perm = new Array(512); |
|||
let gradP = new Array(512); |
|||
// This isn't a very good seeding function, but it works ok. It supports 2^16
|
|||
// different seed values. Write something better if you need more seeds.
|
|||
function seed(seed) { |
|||
if (seed > 0 && seed < 1) { |
|||
// Scale the seed out
|
|||
seed *= 65536; |
|||
} |
|||
seed = Math.floor(seed); |
|||
if (seed < 256) { |
|||
seed |= seed << 8; |
|||
myChart.setOption(option); |
|||
} |
|||
|
|||
setInterval(function () { |
|||
$.get( |
|||
ROOT_PATH + '/loraData?item=' + title, |
|||
function (_rawData2) { |
|||
|
|||
if (dataAll.length > 40){ |
|||
dataAll.shift(); |
|||
dataAll.shift(); |
|||
} |
|||
for (let i = 0; i < 256; i++) { |
|||
let v; |
|||
if (i & 1) { |
|||
v = p[i] ^ (seed & 255); |
|||
|
|||
_rawData2.forEach(value => dataAll.push(value)); |
|||
|
|||
_rawData = [["Income","Life Expectancy","Population","Country","Year"]]; |
|||
dataAll.forEach(value => _rawData.push(value)); |
|||
|
|||
myChart.setOption({ |
|||
dataset: [ |
|||
{ |
|||
source: _rawData |
|||
} |
|||
], |
|||
}); |
|||
|
|||
let original = ''; |
|||
dataAll.forEach((elem, index) => { |
|||
original += elem[3] + elem[0]; |
|||
if (elem[3] == "血氧") { |
|||
original += '%' |
|||
} else { |
|||
v = p[i] ^ ((seed >> 8) & 255); |
|||
original += '℃' |
|||
} |
|||
perm[i] = perm[i + 256] = v; |
|||
gradP[i] = gradP[i + 256] = grad3[v % 12]; |
|||
} |
|||
} |
|||
seed(0); |
|||
// ##### Perlin noise stuff
|
|||
function fade(t) { |
|||
return t * t * t * (t * (t * 6 - 15) + 10); |
|||
} |
|||
function lerp(a, b, t) { |
|||
return (1 - t) * a + t * b; |
|||
original += ' ' |
|||
}) |
|||
|
|||
$(".sound-code-chunk-default-content").html(original); |
|||
|
|||
|
|||
} |
|||
// 2D Perlin Noise
|
|||
function perlin2(x, y) { |
|||
// Find unit grid cell containing point
|
|||
let X = Math.floor(x), |
|||
Y = Math.floor(y); |
|||
// Get relative xy coordinates of point within that cell
|
|||
x = x - X; |
|||
y = y - Y; |
|||
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
|
|||
X = X & 255; |
|||
Y = Y & 255; |
|||
// Calculate noise contributions from each of the four corners
|
|||
let n00 = gradP[X + perm[Y]].dot2(x, y); |
|||
let n01 = gradP[X + perm[Y + 1]].dot2(x, y - 1); |
|||
let n10 = gradP[X + 1 + perm[Y]].dot2(x - 1, y); |
|||
let n11 = gradP[X + 1 + perm[Y + 1]].dot2(x - 1, y - 1); |
|||
// Compute the fade curve value for x
|
|||
let u = fade(x); |
|||
// Interpolate the four results
|
|||
return lerp(lerp(n00, n10, u), lerp(n01, n11, u), fade(y)); |
|||
); |
|||
|
|||
|
|||
|
|||
}, 1000); |
|||
|
|||
|
|||
if (option && typeof option === 'object') { |
|||
myChart.setOption(option); |
|||
} |
|||
|
|||
window.addEventListener('resize', myChart.resize); |
|||
|
|||
} |
|||
|
|||
function lineGraph2(dom, title, unit){ |
|||
var myChart = echarts.init(dom, null, { |
|||
renderer: 'canvas', |
|||
useDirtyRect: false |
|||
}); |
|||
var app = {}; |
|||
var ROOT_PATH = ''; |
|||
var option; |
|||
var dataAll = []; |
|||
|
|||
$.get( |
|||
ROOT_PATH + '/loraData', |
|||
function (_rawData) { |
|||
_rawData.forEach(value => dataAll.push(value)); |
|||
run(_rawData); |
|||
} |
|||
return { |
|||
seed, |
|||
perlin2 |
|||
); |
|||
function run(_rawData) { |
|||
_rawData.unshift(["Income","Life Expectancy","Population","Country","Year"]) |
|||
// var countries = ['Australia', 'Canada', 'China', 'Cuba', 'Finland', 'France', 'Germany', 'Iceland', 'India', 'Japan', 'North Korea', 'South Korea', 'New Zealand', 'Norway', 'Poland', 'Russia', 'Turkey', 'United Kingdom', 'United States'];
|
|||
const countries = [title]; |
|||
const datasetWithFilters = []; |
|||
const seriesList = []; |
|||
echarts.util.each(countries, function (country) { |
|||
var datasetId = 'dataset_' + country; |
|||
datasetWithFilters.push({ |
|||
id: datasetId, |
|||
fromDatasetId: 'dataset_raw', |
|||
transform: { |
|||
type: 'filter', |
|||
config: { |
|||
and: [ |
|||
// { dimension: 'Year', gte: 1950 },
|
|||
{ dimension: 'Country', '=': country } |
|||
] |
|||
} |
|||
} |
|||
}); |
|||
seriesList.push({ |
|||
type: 'line', |
|||
datasetId: datasetId, |
|||
showSymbol: false, |
|||
smooth: true, |
|||
name: country, |
|||
endLabel: { |
|||
show: true, |
|||
formatter: function (params) { |
|||
return params.value[3] + ': ' + params.value[0] + unit; |
|||
} |
|||
}, |
|||
labelLayout: { |
|||
moveOverlap: 'shiftY' |
|||
}, |
|||
emphasis: { |
|||
focus: 'series' |
|||
}, |
|||
encode: { |
|||
x: 'Year', |
|||
y: 'Income', |
|||
label: ['Country', 'Income'], |
|||
itemName: 'Year', |
|||
tooltip: ['Income'] |
|||
} |
|||
}); |
|||
}); |
|||
option = { |
|||
animationDuration: 10000, |
|||
dataset: [ |
|||
{ |
|||
id: 'dataset_raw', |
|||
source: _rawData |
|||
}, |
|||
...datasetWithFilters |
|||
], |
|||
tooltip: { |
|||
order: 'valueDesc', |
|||
trigger: 'axis' |
|||
}, |
|||
xAxis: { |
|||
type: 'category', |
|||
nameLocation: 'middle' |
|||
}, |
|||
yAxis: { |
|||
scale: false, |
|||
name: 'Income' |
|||
}, |
|||
grid: { |
|||
right: 140 |
|||
}, |
|||
color:[ |
|||
'rgba(231,82,27,0.94)' |
|||
], |
|||
series: seriesList |
|||
}; |
|||
myChart.setOption(option); |
|||
} |
|||
|
|||
setInterval(function () { |
|||
$.get( |
|||
ROOT_PATH + '/loraData?item=' + title, |
|||
function (_rawData2) { |
|||
|
|||
if (dataAll.length > 40){ |
|||
dataAll.shift(); |
|||
dataAll.shift(); |
|||
} |
|||
|
|||
_rawData2.forEach(value => dataAll.push(value)); |
|||
|
|||
_rawData = [["Income","Life Expectancy","Population","Country","Year"]]; |
|||
dataAll.forEach(value => _rawData.push(value)); |
|||
|
|||
myChart.setOption({ |
|||
dataset: [ |
|||
{ |
|||
source: _rawData |
|||
} |
|||
], |
|||
}); |
|||
|
|||
let original = ''; |
|||
dataAll.forEach((elem, index) => { |
|||
original += elem[3] + elem[0]; |
|||
if (elem[3] == "血氧") { |
|||
original += '%' |
|||
} else { |
|||
original += '℃' |
|||
} |
|||
original += ' ' |
|||
}) |
|||
|
|||
$(".sound-code-chunk-default-content").html(original); |
|||
|
|||
|
|||
} |
|||
); |
|||
|
|||
|
|||
|
|||
}, 1000); |
|||
|
|||
|
|||
if (option && typeof option === 'object') { |
|||
myChart.setOption(option); |
|||
} |
|||
|
|||
window.addEventListener('resize', myChart.resize); |
|||
} |
|||
|
|||
} |
|||
|
|||
|
Loading…
Reference in new issue