You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

215 lines
6.3 KiB

//////////////////////////////////////////////////////////////////////////
/// COPYRIGHT NOTICE
/// Copyright (c) 2023 CCSENS
/// All rights reserved.
///
/// @file main.c
/// @brief main app
///
///(本文件实现的功能的详述)
///
/// @version 1.1 CCsens technology
/// @author CC
/// @date 20150102
///
///
/// 修订说明:最初版本
/// Modified by:
/// Modified date:
/// Version:
/// Descriptions:
// 20160413 CC-ACC-VH02
// 连接至 J22 RXD0 TXD0
//P5_DIR &= ~BITN1; //p5.1输出TXD
//P5_DIR |= BITN0; //p5.0输入RXD
//P5_SEL0 &= ~(BITN0 +BITN1); //设置P5.0 P5.1为UART0 RXD TXD
//P5_SEL1 |= BITN0 +BITN1;
/*****************************************************************************
update by cc @201700110
针对多串口 和 单一串口 有区别 每个串口是独立的还是分开的有讲究 程序是复杂的还是软件应用简单是
个需要平衡的事情.
clib/clib.c:
公用的函数 和硬件无关
放置串行模式(串口等其他通讯总线类的输出)输出的函数,
一些覆盖模式输出的(lcd等固屏输出的)的也可使用
void Lc_print(void (*L0pf_send_uc)(char ww), char *dat,...)
-----------------------------------------------------------------------------------------
uartcom/Uprotocol2app
协议到应用
为了适应不同的通讯协议需要不同的uart口来对应 和应用相关
typedef struct _ts_lcm_pro_; 应用协议包的定义? LCM的协议------------
L3_UARTcom0_exp_protocol 解析应用协议
-----------------------------------------------------------------------------------------
uartcom/urec2protocol: 接收到的数据放入到指向特定协议的缓存中,和协议的格式有关 一般分为 标头式或者标尾式
公用的串口通讯定义
struct _s_uart_rec_ 的公共协议包(关键的结构体)的声明------struct _s_uart_rec_
void L1_uart_2buf(struct _s_uart_rec_ *p)串行数据保存到指向特定协议的缓冲中
--------------------------------------------------------------------------------------------
msp/uartx.c 底层代码 和cpu相关 缓存发送也放在里面
L0_UART0_Init
UART0_IRQHandler
L0_Usend_uc------UserDef
-----------------------------------------------------------------------------------------
********************************************************************************/
#include "msp_uart4.h"
#include "tpc_road.h"
#if(MainFre_5M == D_sys_MainFre)
#elif(MainFre_22M == D_sys_MainFre)
#if(BRT_115200 == D_UART2_BRT)
/************* void L0_uart4_init(void)/// void UartInit(void) //115200bps@22.1184MHz
{
S4CON = 0x10; //8位数据,可变波特率
S4CON |= 0x40; //串口4选择定时器4为波特率发生器
T4T3M &= 0xDF; //定时器时钟12T模式
T4L = 0xFC; //设置定时初始值
T4H = 0xFF; //设置定时初始值
T4T3M |= 0x80; //定时器4开始计时
}
*********/
void L0_uart4_init(void) ///void UartInit(void) //115200bps@22.1184MHz
{
S4CON = 0x10; //8位数据,可变波特率
S4CON &= 0xBF; //串口4选择定时器2为波特率发生器
AUXR &= 0xFB; //定时器时钟12T模式
T2L = 0xFC; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
}
#elif(BRT_460800 == D_UART2_BRT)
#elif(BRT_921600 == D_UART2_BRT)
#elif(BRT_19200 == D_UART2_BRT)
#elif(BRT_9600== D_UART2_BRT)
#else///9600
#endif//D_sys_MainFre)
#elif(MainFre_27M == D_sys_MainFre)
#elif(MainFre_44M == D_sys_MainFre)
#if(BRT_115200 == D_UART2_BRT)
#elif(BRT_460800 == D_UART2_BRT)
#elif(BRT_921600 == D_UART2_BRT)
#elif(BRT_19200 == D_UART2_BRT)
#elif(BRT_9600== D_UART2_BRT)
#else///9600
#endif//D_sys_MainFre)
#else ///MainFre_11M
#if(BRT_115200 == D_UART2_BRT)
#elif(BRT_19200 == D_UART2_BRT)
#elif(BRT_9600== D_UART2_BRT)
#else///9600
#endif//D_sys_MainFre)
#endif//D_sys_MainFre)
void L0_uart4_buf_init(void)
{
ts_Usend[D_UART4].max = ts_Usend[D_UART4].now = 0;
ts_Usend[D_UART4].ok = D_ready;
ts_Usend[D_UART4].sbuf = ts_Usendbuf.s4;
D_s2b_road4_init();
L0_uart4_init();
L0_uart4_IntRIClear(); L0_uart4_IntTIClear();
D_UART4_ES_INT(1); //打开串口中断
#if (D_UART4_485_TYPE != TYPE_485_NONE)
D_UART4_485_RX() //默认处于接收状态
#endif
}
void L0_uart4_sendArray(U8 * buf, U16 len)
{
#if (D_UART4_485_TYPE != TYPE_485_NONE)
D_UART4_485_TX() //切换到输出状态
#endif
L0_uartN_sendArray(D_UART4,buf,len);
}
/*************************************************
UART 中断
*************************************************/
///#define D_SERVE_UART4 interrupt 17
void INTERRUPT_UART4(void) D_SERVE_UART4
{
NOP(); NOP(); NOP();
if(L0_uart4_IntRI()) //如果是U0接收中断
{
L0_uart4_IntRIClear(); //清除接收中断标志
ts_Urec[D_UART4].reg = L0_uart4_get();
ts_Urec[D_UART4].idle = 0;
ts_Urec[D_UART4].overtime_t = 0;///需要和tick 定时器中的配合 作为接收超时判定
/// L1_s2b_PH5_debug(&ts_s2b_debug);
/// L1_s2b_PH5_debug(TS_s2b_debug);
/// L1_s2b_road4(&ts_Urec[D_UART4]);
L1_s2b_road4(D_UART4);
}
if(L0_uart4_IntTI())
{
if(L0_uart4_IntTI()) //如果是U0发送中断
{
L0_uart4_IntTIClear(); //清除发送中断标志
if(ts_Usend[D_UART4].max != ts_Usend[D_UART4].now)
{
///L0_uartN_set(uNum3,ts_uart[uNum3].p->p[ts_uart[uNum3].p->now]);
L0_uart4_set(ts_Usend[D_UART4].sbuf[ts_Usend[D_UART4].now]);
ts_Usend[D_UART4].now ++;
}
else
{
ts_Usend[D_UART4].ok = D_ready;
ts_Usend[D_UART4].max = 0;
ts_Usend[D_UART4].now = 0;//可以发送下一个数据
#if (D_UART4_485_TYPE != TYPE_485_NONE)
D_UART4_485_RX() //切换到接收状态
///gfgfgfh
#endif
}
}
}
NOP(); NOP(); NOP();
}
void L2_uart4_overtime_callback(void)
{////必须清除当前的idle
if(0 == ts_Urec[D_UART4].idle)
{
if(ts_Urec[D_UART4].overtime_t >= 2)
{
ts_Urec[D_UART4].idle = 1;//总线空闲
ts_Urec[D_UART4].head = 0;
//// printf(" ts_s2b_debug.fifo = %d ",(int)ts_s2b_debug.fifo);
if(ts_Urec[D_UART4].fifo > 0)
{
ts_Urec[D_UART4].fifo = 0;
ts_Urec[D_UART4].ok = 1;/// 接收到的数据结束 : 总线空闲+buf非空
}
}
ts_Urec[D_UART4].overtime_t ++;
}
}