////////////////////////////////////////////////////////////////////////// /// COPYRIGHT NOTICE /// Copyright (c) 2023 CCSENS /// All rights reserved. /// /// @file main.c /// @brief main app /// ///(本文件实现的功能的详述) /// /// @version 1.1 CCsens technology /// @author CC /// @date 20150102 /// /// /// 修订说明:最初版本 /// Modified by: /// Modified date: /// Version: /// Descriptions: // 20160413 CC-ACC-VH02 // 连接至 J22 RXD0 TXD0 //P5_DIR &= ~BITN1; //p5.1输出TXD //P5_DIR |= BITN0; //p5.0输入RXD //P5_SEL0 &= ~(BITN0 +BITN1); //设置P5.0 P5.1为UART0 RXD TXD //P5_SEL1 |= BITN0 +BITN1; /***************************************************************************** update by cc @201700110 针对多串口 和 单一串口 有区别 每个串口是独立的还是分开的有讲究 程序是复杂的还是软件应用简单是 个需要平衡的事情. clib/clib.c: 公用的函数 和硬件无关 放置串行模式(串口等其他通讯总线类的输出)输出的函数, 一些覆盖模式输出的(lcd等固屏输出的)的也可使用 void Lc_print(void (*L0pf_send_uc)(char ww), char *dat,...) ----------------------------------------------------------------------------------------- uartcom/Uprotocol2app 协议到应用 为了适应不同的通讯协议需要不同的uart口来对应 和应用相关 typedef struct _ts_lcm_pro_; 应用协议包的定义? LCM的协议------------ L3_UARTcom0_exp_protocol 解析应用协议 ----------------------------------------------------------------------------------------- uartcom/urec2protocol: 接收到的数据放入到指向特定协议的缓存中,和协议的格式有关 一般分为 标头式或者标尾式 公用的串口通讯定义 struct _s_uart_rec_ 的公共协议包(关键的结构体)的声明------struct _s_uart_rec_ void L1_uart_2buf(struct _s_uart_rec_ *p)串行数据保存到指向特定协议的缓冲中 -------------------------------------------------------------------------------------------- msp/uartx.c 底层代码 和cpu相关 缓存发送也放在里面 L0_UART0_Init UART0_IRQHandler L0_Usend_uc------UserDef ----------------------------------------------------------------------------------------- ********************************************************************************/ #include "msp_uart4.h" #include "tpc_road.h" #if(MainFre_5M == D_sys_MainFre) #elif(MainFre_22M == D_sys_MainFre) #if(BRT_115200 == D_UART2_BRT) /************* void L0_uart4_init(void)/// void UartInit(void) //115200bps@22.1184MHz { S4CON = 0x10; //8位数据,可变波特率 S4CON |= 0x40; //串口4选择定时器4为波特率发生器 T4T3M &= 0xDF; //定时器时钟12T模式 T4L = 0xFC; //设置定时初始值 T4H = 0xFF; //设置定时初始值 T4T3M |= 0x80; //定时器4开始计时 } *********/ void L0_uart4_init(void) ///void UartInit(void) //115200bps@22.1184MHz { S4CON = 0x10; //8位数据,可变波特率 S4CON &= 0xBF; //串口4选择定时器2为波特率发生器 AUXR &= 0xFB; //定时器时钟12T模式 T2L = 0xFC; //设置定时初始值 T2H = 0xFF; //设置定时初始值 AUXR |= 0x10; //定时器2开始计时 } #elif(BRT_460800 == D_UART2_BRT) #elif(BRT_921600 == D_UART2_BRT) #elif(BRT_19200 == D_UART2_BRT) #elif(BRT_9600== D_UART2_BRT) #else///9600 #endif//D_sys_MainFre) #elif(MainFre_27M == D_sys_MainFre) #elif(MainFre_44M == D_sys_MainFre) #if(BRT_115200 == D_UART2_BRT) #elif(BRT_460800 == D_UART2_BRT) #elif(BRT_921600 == D_UART2_BRT) #elif(BRT_19200 == D_UART2_BRT) #elif(BRT_9600== D_UART2_BRT) #else///9600 #endif//D_sys_MainFre) #else ///MainFre_11M #if(BRT_115200 == D_UART2_BRT) #elif(BRT_19200 == D_UART2_BRT) #elif(BRT_9600== D_UART2_BRT) #else///9600 #endif//D_sys_MainFre) #endif//D_sys_MainFre) void L0_uart4_buf_init(void) { ts_Usend[D_UART4].max = ts_Usend[D_UART4].now = 0; ts_Usend[D_UART4].ok = D_ready; ts_Usend[D_UART4].sbuf = ts_Usendbuf.s4; D_s2b_road4_init(); L0_uart4_init(); L0_uart4_IntRIClear(); L0_uart4_IntTIClear(); D_UART4_ES_INT(1); //打开串口中断 #if (D_UART4_485_TYPE != TYPE_485_NONE) D_UART4_485_RX() //默认处于接收状态 #endif } void L0_uart4_sendArray(U8 * buf, U16 len) { #if (D_UART4_485_TYPE != TYPE_485_NONE) D_UART4_485_TX() //切换到输出状态 #endif L0_uartN_sendArray(D_UART4,buf,len); } /************************************************* UART 中断 *************************************************/ ///#define D_SERVE_UART4 interrupt 17 void INTERRUPT_UART4(void) D_SERVE_UART4 { NOP(); NOP(); NOP(); if(L0_uart4_IntRI()) //如果是U0接收中断 { L0_uart4_IntRIClear(); //清除接收中断标志 ts_Urec[D_UART4].reg = L0_uart4_get(); ts_Urec[D_UART4].idle = 0; ts_Urec[D_UART4].overtime_t = 0;///需要和tick 定时器中的配合 作为接收超时判定 /// L1_s2b_PH5_debug(&ts_s2b_debug); /// L1_s2b_PH5_debug(TS_s2b_debug); /// L1_s2b_road4(&ts_Urec[D_UART4]); L1_s2b_road4(D_UART4); } if(L0_uart4_IntTI()) { if(L0_uart4_IntTI()) //如果是U0发送中断 { L0_uart4_IntTIClear(); //清除发送中断标志 if(ts_Usend[D_UART4].max != ts_Usend[D_UART4].now) { ///L0_uartN_set(uNum3,ts_uart[uNum3].p->p[ts_uart[uNum3].p->now]); L0_uart4_set(ts_Usend[D_UART4].sbuf[ts_Usend[D_UART4].now]); ts_Usend[D_UART4].now ++; } else { ts_Usend[D_UART4].ok = D_ready; ts_Usend[D_UART4].max = 0; ts_Usend[D_UART4].now = 0;//可以发送下一个数据 #if (D_UART4_485_TYPE != TYPE_485_NONE) D_UART4_485_RX() //切换到接收状态 ///gfgfgfh #endif } } } NOP(); NOP(); NOP(); } void L2_uart4_overtime_callback(void) {////必须清除当前的idle if(0 == ts_Urec[D_UART4].idle) { if(ts_Urec[D_UART4].overtime_t >= 2) { ts_Urec[D_UART4].idle = 1;//总线空闲 ts_Urec[D_UART4].head = 0; //// printf(" ts_s2b_debug.fifo = %d ",(int)ts_s2b_debug.fifo); if(ts_Urec[D_UART4].fifo > 0) { ts_Urec[D_UART4].fifo = 0; ts_Urec[D_UART4].ok = 1;/// 接收到的数据结束 : 总线空闲+buf非空 } } ts_Urec[D_UART4].overtime_t ++; } }