////////////////////////////////////////////////////////////////////////// /// COPYRIGHT NOTICE /// Copyright (c) 2023 CCSENS /// All rights reserved. /// /// @file main.c /// @brief main app /// ///(本文件实现的功能的详述) /// /// @version 1.1 CCsens technology /// @author CC /// @date 20150102 /// /// /// 修订说明:最初版本 /// Modified by: /// Modified date: /// Version: /// Descriptions: // 20160413 CC-ACC-VH02 // 连接至 J22 RXD0 TXD0 //P5_DIR &= ~BITN1; //p5.1输出TXD //P5_DIR |= BITN0; //p5.0输入RXD //P5_SEL0 &= ~(BITN0 +BITN1); //设置P5.0 P5.1为UART2 RXD TXD //P5_SEL1 |= BITN0 +BITN1; ////20221217_213321 CCmodify new uart struct for road protocol /***************************************************************************** update by cc @201700110 针对多串口 和 单一串口 有区别 每个串口是独立的还是分开的有讲究 程序是复杂的还是软件应用简单是 个需要平衡的事情. c_lib/c_lib.c: 公用的函数 和硬件无关 放置串行模式(串口等其他通讯总线类的输出)输出的函数, 一些覆盖模式输出的(lcd等固屏输出的)的也可使用 void Lc_print(void (*L0pf_send_uc)(char ww), char *dat,...) ----------------------------------------------------------------------------------------- uartcom/Uprotocol2app 协议到应用 为了适应不同的通讯协议需要不同的uart口来对应 和应用相关 typedef struct _ts_lcm_pro_; 应用协议包的定义? LCM的协议------------ L3_UARTcom0_exp_protocol 解析应用协议 ----------------------------------------------------------------------------------------- uartcom/urec2protocol: 接收到的数据放入到指向特定协议的缓存中,和协议的格式有关 一般分为 标头式或者标尾式 公用的串口通讯定义 struct _s_uart_rec_ 的公共协议包(关键的结构体)的声明------struct _s_uart_rec_ void L1_uart_2buf(struct _s_uart_rec_ *p)串行数据保存到指向特定协议的缓冲中 -------------------------------------------------------------------------------------------- msp/uartx.c 底层代码 和cpu相关 缓存发送也放在里面 L0_UART2_Init UART2_IRQHandler L0_Usend_uc------UserDef ----------------------------------------------------------------------------------------- ********************************************************************************/ #include "msp_UART2.h" ///#include "msp_time2.h" #include "c_crc.h" #include "c_delay.h" ///#include "tpc_debug.h" #include "debug_drv.h" #include "tpc_road.h" //#define _USE_485 ///static volatile TS_Uart_Send_ ts_uart_send_shop; ///>>>>>>>>>>>>>>>>和cpu相关 #if(MainFre_5M == D_sys_MainFre) #elif(MainFre_22M == D_sys_MainFre) #if(BRT_115200 == D_UART2_BRT) void L0_uart2_init(void) //115200bps@22.1184MHz { S2CON = 0x50; //8位数据,可变波特率 AUXR &= 0xFB; //定时器时钟12T模式 T2L = 0xFC; //设置定时初始值 T2H = 0xFF; //设置定时初始值 AUXR |= 0x10; //定时器2开始计时 } #elif(BRT_460800 == D_UART2_BRT) #elif(BRT_921600 == D_UART2_BRT) #elif(BRT_19200 == D_UART2_BRT) #elif(BRT_9600== D_UART2_BRT) void L0_uart2_init(void) //9600bps@22.1184MHz { S2CON = 0x50; //8位数据,可变波特率 AUXR &= 0xFB; //定时器时钟12T模式 T2L = 0xD0; //设置定时初始值 T2H = 0xFF; //设置定时初始值 AUXR |= 0x10; //定时器2开始计时 } #else///9600 #endif//D_sys_MainFre) #elif(MainFre_27M == D_sys_MainFre) #elif(MainFre_44M == D_sys_MainFre) #if(BRT_115200 == D_UART2_BRT) void L0_uart2_init(void) /// void UartInit(void) //115200bps@44.2368MHz { S2CON = 0x50; //8位数据,可变波特率 AUXR &= 0xFB; //定时器时钟12T模式 T2L = 0xF8; //设置定时初始值 T2H = 0xFF; //设置定时初始值 AUXR |= 0x10; //定时器2开始计时 } #elif(BRT_460800 == D_UART2_BRT) #elif(BRT_921600 == D_UART2_BRT) #elif(BRT_19200 == D_UART2_BRT) #elif(BRT_9600== D_UART2_BRT) #else///9600 #endif//D_sys_MainFre) #else ///MainFre_11M #if(BRT_115200 == D_UART2_BRT) void L0_uart2_init(void) ///void UartInit(void) //115200bps@11.0592MHz { S2CON = 0x50; //8位数据,可变波特率 AUXR |= 0x04; //定时器时钟1T模式 T2L = 0xE8; //设置定时初始值 T2H = 0xFF; //设置定时初始值 AUXR |= 0x10; //定时器2开始计时 } #elif(BRT_19200 == D_UART2_BRT) #elif(BRT_9600== D_UART2_BRT) #else///9600 #endif//D_sys_MainFre) #endif//D_sys_MainFre) ///>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>和cpu相关 void L0_uart2_buf_init(void) { /// ts_uart[uNum2].p = &ts_uart_send_shop; ts_Usend[D_UART2].max = ts_Usend[D_UART2].now = 0; ts_Usend[D_UART2].ok = D_ready; L0_uartN_sbuf(D_UART2); ts_Usend[D_UART2].max_def = D_send2_max; D_s2b_road2_init(); D_stdIO_P1(BITN1); D_stdIO_P1(BITN0); L0_uart2_init(); L0_uart2_IntRIClear(); L0_uart2_IntTIClear(); D_UART2_ES_INT(1); //打开串口中断 #if (D_UART2_485_TYPE != TYPE_485_NONE) D_UART2_485_RX() //默认处于接收状态 #endif L1_UART2_timer_isFree_init(); } ////U8 overtime_t; //超时溢出的计数器 ////U8 overtime_flag; ///0:没有超时溢出 1:超时溢出 ////U8 over_flag; ////串口接收结束的状态 0:超时溢出 1:超出max接收 ///D_LED4_REV(); void L2_uart2_overtime_callback(void) {////必须清除当前的idle if(0 == ts_Urec[D_UART2].idle) { if(ts_Urec[D_UART2].overtime_t >= 2) { ts_Urec[D_UART2].idle = 1;//总线空闲 ts_Urec[D_UART2].head = 0; //// printf(" ts_s2b_debug.fifo = %d ",(int)ts_s2b_debug.fifo); if(ts_Urec[D_UART2].fifo > 0) {ts_Urec[D_UART2].fifo = 0; ts_Urec[D_UART2].ok = 1;/// 接收到的数据结束 : 总线空闲+buf非空 //// L1_uartD_sendArray((U8 *)ts_debug_rec.filter, 5); /******* L1_uartD_sendArrayhex((U8 *)&ts_debug_rec.filter, 5); ts_debug_rec.filter = 0x31; ts_debug_rec.R1 = 0x32; ts_debug_rec.R2 = 0x33; ts_debug_rec.R3 = 0x34; ts_debug_rec.ocr = 0x35; L1_uartD_sendArrayhex((U8 *)&ts_debug_rec.filter, 5); *********/ } } ts_Urec[D_UART2].overtime_t ++; } } /************************************************* UART 中断 *************************************************/ void INTERRUPT_UART2(void) D_SERVE_UART2 { if(L0_uart2_IntRI()) //如果是U0接收中断 { L0_uart2_IntRIClear(); //清除接收中断标志 ///>>>>>>>>>>>>>接收协议 可以更改为其他协议>>>>>>>>>>>>>>>>>>>>>>>> ts_Urec[D_UART2].reg = L0_uart2_get(); ts_Urec[D_UART2].idle = 0; ts_Urec[D_UART2].overtime_t = 0;///需要和tick 定时器中的配合 作为接收超时判定 /// L1_s2b_PH5_debug(&ts_s2b_debug); /// L1_s2b_PH5_debug(TS_s2b_debug); /// L1_s2b_road2(&ts_Urec[D_UART2]); L1_s2b_road2(D_UART2); ///<<<<<<<<<<<<<<<<<<<<<<<<<<<<< } if(L0_uart2_IntTI()) //如果是U0发送中断 { L0_uart2_IntTIClear(); //清除发送中断标志 if(ts_Usend[D_UART2].max != ts_Usend[D_UART2].now) { ///L0_uartN_set(uNum2,ts_uart[uNum2].p->p[ts_uart[uNum2].p->now]); L0_uart2_set(ts_Usend[D_UART2].sbuf[ts_Usend[D_UART2].now]); ts_Usend[D_UART2].now ++; } else { ts_Usend[D_UART2].ok = D_ready; ts_Usend[D_UART2].max = 0; ts_Usend[D_UART2].now = 0;//可以发送下一个数据 #if (D_UART2_485_TYPE != TYPE_485_NONE) D_UART2_485_RX() //切换到接收状态 ///gfgfgfh #endif } } //NOP(); NOP(); NOP(); } ///L2_callback_UART2_free(&s_UART2_rec); #if 0 void L1_uart2_sendArray(U8 * buf, U16 len) { #if (D_UART2_485_TYPE != TYPE_485_NONE) D_UART2_485_TX() //切换到输出状态 #endif L0_uartN_sendArray(uNum2,buf,len); } void L2_callback_UART2_free(Ts_uart_rev_ *p) { ///Ts_uart_rev_ *p = &s_UART2_rec; #define D_s_modbus_min 4 //modbus协议的最小长度 /// D_P24_REV(); ////while(9) D_P24_REV(); if((p->head == 1) && (p->num >= D_s_modbus_min)) { //LED1 ^= 1; p->head = 0; #ifdef D_use_crc crc16qq(p->crc,p->buf,p->num - 2); ////fixme 20220311 ///crc16qq(p->crc,p->buf,p->num - 2); //校验CRC #endif // crc16(p->crc,p->buf,p->num - 2); //校验CRC if(p->crc[0] == p->buf[p->num-2] && p->crc[1] == p->buf[p->num-1]) { p->ok = 1; /// LED0 ^= 1; } p->debugok = 1;////s_UART2_rec.debugok } L1_UART2_isFree_over(); //// D_motor1_FI_rev(); } #endif